DR/DZ equivalence conjecture and tautological relations
نویسندگان
چکیده
منابع مشابه
Martin’s Conjecture, Arithmetic Equivalence, and Countable Borel Equivalence Relations
There is a fascinating interplay and overlap between recursion theory and descriptive set theory. A particularly beautiful source of such interaction has been Martin’s conjecture on Turing invariant functions. This longstanding open problem in recursion theory has connected to many problems in descriptive set theory, particularly in the theory of countable Borel equivalence relations. In this p...
متن کاملFUZZY SUBGROUPS AND CERTAIN EQUIVALENCE RELATIONS
In this paper, we study an equivalence relation on the set of fuzzysubgroups of an arbitrary group G and give four equivalent conditions each ofwhich characterizes this relation. We demonstrate that with this equivalencerelation each equivalence class constitutes a lattice under the ordering of fuzzy setinclusion. Moreover, we study the behavior of these equivalence classes under theaction of a...
متن کاملRelations and Equivalence Relations
In this section, we shall introduce a formal definition for the notion of a relation on a set. This is something we often take for granted in elementary algebra courses, but is a fundamental concept in mathematics i.e. the very notion of a function relies upon the definition of a relation. Following this, we shall discuss special types of relations on sets. 1. Binary Relations and Basic Definit...
متن کاملTautological Relations on the Stable Map Spaces
The cohomology of the spaces of rational stable maps to flag varieties is generated by tautological classes. We study relations between the tautological generators. We conjecture that all relations between these generators are tautological, i.e. they are essentially obtained from Keel’s relations onM0,n with the aid of the pushforwards by the natural morphisms. We check this claim on the open p...
متن کاملfuzzy subgroups and certain equivalence relations
in this paper, we study an equivalence relation on the set of fuzzysubgroups of an arbitrary group g and give four equivalent conditions each ofwhich characterizes this relation. we demonstrate that with this equivalencerelation each equivalence class constitutes a lattice under the ordering of fuzzy setinclusion. moreover, we study the behavior of these equivalence classes under theaction of a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometry & Topology
سال: 2019
ISSN: 1364-0380,1465-3060
DOI: 10.2140/gt.2019.23.3537